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RRV (Rabin Rivest Voting) 
Properties 

•  Voter Privacy Preserving 
•  Vote Values Publicly Posted 
•  Publicly Verifiable Proof of Correctness 
•  Supports Complicated Voting Forms 
•  Resistant to Gossipy and Failing Servers 
•  Highly Efficient 
•  Not Dependent on Specialized Encryptions 

Such as Homomorphic Encryptions 
•  Employs Novel Highly Efficient, Verifiable, 

Mix-Net Using Just Any Commitment 
Functions and Split-Value Representation 



Structure 

•  Voter Uses Tablet 
•  Secure Bulletin Board (SBB) for Posting 

Concealed Votes, Eventually Clear Vote 
Values, Proof of Correctness 

•  Proof Server (PS) Consisting of (For 
Example) 11 Interconnected Servers  

•  In Example, Tolerates Up To Two 
Gossipy Servers, Two Failing Servers 

•  Correctness Proof, If Accepted, Assures 
Absolute Correctness of Vote Tally 
Irrespective of Server Misbehavior 



Split-Value Representations 
[Rabin et al., 2007], [Rabin et al., 2009] 

 •  Let M be an integer, 0  ≤  𝑥  <  𝑀 a value. A 
Split-Value (SV) representation of 𝑥 is 𝑋  =  
(𝑢,𝑣) where  

Val(𝑋)  =  (𝑢+𝑣)  𝑚𝑜𝑑  𝑀  =  𝑥 
•  Random SV representation is obtained 

by 𝑢  ←𝑅┴[0,  𝑀−1], and 

𝑣=(𝑥−𝑢)  𝑚𝑜𝑑  𝑀 
•  Let COM(  ,  ) be a commitment function so 

that a value 𝑢 is committed by choosing 
key 𝐾 and setting COM(𝑢)  =  COM(𝐾,  𝑢) 



Split-Value Representations 
Continued 

•  Opening / Decommitting COM(𝑢) done by 
revealing 𝐾,  𝑢. Checking correctness by 
computing COM(𝐾,  𝑢) and verifying equality 
with COM(𝑢). 

•  COMSV(𝑋) (COM Split-Value X) for 𝑋  =  (𝑢,  𝑣) 
obtained by choosing random keys ​𝐾↓1 ,   ​𝐾↓2  
and setting COMSV(𝑋)  =  (COM( ​𝐾↓1 ,  𝑢),  COM( ​𝐾↓2 ,  
𝑣)) 



Proving Correctness of Equality and of 
Addition of Concealed Values 

•  Let 𝑋  =  (​𝑢↓1 , ​𝑣↓1 ),  𝑌=(​𝑢↓2 , ​𝑣↓2 ). Assume COMSV(𝑋), 
COMSV(𝑌) posted. Prover who knows to 
open commitments, claims to Verifier 
that Val(𝑋)=Val(𝑌) 

•  Note: Val(𝑋)=Val(𝑌) iff exists 𝑡∈[0,𝑀−1] s.t. 𝑋=𝑌
+(𝑡,  −𝑡) i.e. (​𝑢↓1 , ​𝑣↓1 )=(​𝑢↓2 +𝑡, ​𝑣↓2 −𝑡) (all ops. 𝑚𝑜𝑑  𝑀) 

•  Proof: Prover posts 𝑡 
 



Proving Correctness of Equality and of 
Addition of Concealed Values 

(Continued) 
•  Verifier randomly chooses 𝑐∈{1,  2} 
•  If 𝑐=1, Prover reveals ​𝑢↓1 , ​𝑢↓2 . Verifier 

checks ​𝑢↓1 = ​𝑢↓2 +𝑡 
•  If 𝑐=2, Prover reveals ​𝑣↓1 , ​𝑣↓2 . Verifier 

checks ​𝑣↓1 = ​𝑣↓2 −𝑡 
•  PROB(Verifier Accepts False Claim of 

Val(𝑋) = Val(𝑌)) ≤ ½ ) = Val(𝑌)) ≤ ½ 
•  Assume COMSV(𝑋), COMSV(𝑌), 

COMSV(𝑍) posted. Prover who knows to 
open commitments claims to Verifier that 
Val(𝑋)+Val(𝑌) = Val(𝑍) 



Proving Correctness of Addition 
(Continued) 

•  Again, addition holds iff exists 𝑡∈[0,𝑀−1], s.t. 𝑋
+𝑌=𝑍+(𝑡,−𝑡). I.e. (​𝑢↓1 , ​𝑣↓1 )+(​𝑢↓2 , ​𝑣↓2 )=( ​𝑢↓3 +𝑡,   ​𝑣↓3 −𝑡) 

•  Again Verifier randomly chooses 𝑐∈{1,  2}. 
•  If 𝑐=1, Prover reveals ​𝑢↓1 , ​𝑢↓2 , ​𝑢↓3 .  
•  Verifier accepts claim if ​𝑢↓1 + ​𝑢↓2 = ​𝑢↓3 +𝑡 
•  Similarly if 𝑐=2 
•  PROB(Verifier accepts false claim)≤1/2 
•  Note that these proofs REVEAL NOTHING 

about Val(𝑋), Val(𝑌), Val(𝑍)!! ), Val(𝑌), Val(𝑍)!! ), Val(𝑍)!! )!! 



Structure of System 

•  Proof Server comprises 9 servers 
arranged in 3 rows and 3 columns 



Structure of System (Continued) 

•  System employs standard PKE, say 
RSA. Three instances 𝐸​𝑁↓1 ,𝐸​𝑁↓2 ,𝐸​𝑁↓3  with 
public encryption keys 𝑒​𝑛↓1 ,  𝑒​𝑛↓2 ,  𝑒​𝑛↓3  and 
private / secret decryption keys 𝑑​𝑐↓1 ,𝑑​𝑐↓2 ,𝑑​𝑐↓3  
are used. 

•  Every Voter Tablet has all public 
encryption keys 𝑒​𝑛↓1 ,  𝑒​𝑛↓2 ,  𝑒​𝑛↓3  

•  In Proof Server PS first server ​𝑃↓1,1  in first 
column gets decryption key 𝑑​𝑐↓1 , second 
server ​𝑃↓2,1 in first column gets 𝑑​𝑐↓2 , third 
server ​𝑃↓3,1  in first column gets 𝑑​𝑐↓3 . 



Voting 
•  Voter gets a Voter Tablet. Vote 

represented by some values  
𝑤∈[0,𝑀−1]. 𝑀, say, = ​2↑32  

•  Tablet randomly breaks voter vote value 𝑤 
into components 𝑤=𝑥+𝑦+𝑧  (𝑀𝑜𝑑  𝑀) 

•  Tablet creates random split-value 
representations 𝑋, 𝑌, 𝑍 for 𝑥,𝑦,𝑧. Tablet selects 
random keys ​𝐾↓1 ,   ​𝐾↓2 ,…, ​𝐾↓5 , ​𝐾↓6 . Creates 
COMSV(𝑋), COMSV(𝑌), COMSV(𝑍) 

•  Voter is assigned vote id 𝑣𝑖𝑑. Voter Ballot is 
𝑣𝑖𝑑,COMSV(𝑋),  COMSV(𝑌),  COMSV(𝑍) 



Voting (Continued) 

•  Not mandatory. Voter gets receipt  
𝑅=𝑣𝑖𝑑,  Hash of his Ballot 

•  Tablet collects all ballots, orders by voter 
ids and posts on SBB 

AES(𝑘𝑡𝑎𝑏,  list	
  of	
  all	
  𝑋	
  
comp.	
  of	
  its	
  vote	
  values)	
  

​𝑃↓1,1 	
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  Tablet:	
  Randomly	
  chooses	
  AES	
  key	
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  commitment	
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•  Similarly for ​𝑃↓2,1  and ​𝑃↓3,1 with 𝑌 and 𝑍 



Creation of Proof 

•  Proof Server chooses 2𝑚 (say 2𝑚=24) 
•  Proof Server repeats 2𝑚 times a net-

mixing of cast votes 
•  Mixing done along the three rows of PS, 

see diagram 
•  In each PS column, Proof Servers jointly 

agree on a permutation of vote values to 
next column 

•  Proof Servers in column agree on 
obfuscation of vote value components, 
see paper for obfuscation 



Creation of Proof (Continued) 
•  Proof Server ​𝑃↓1,3   of rightmost column 

creates COMSV(𝑋) of its obfuscated 
components. Posts in the permuted 
order. Similarly, for ​𝑃↓2,3  creating 
COMSV(𝑌) and ​𝑃↓3,3  creating COMSV(𝑍) 

•  Now there are posted 2𝑚 permutations of 
commitments to obfuscated components 
of all the vote values 

•  Cut-And-Choose: Using strong source of 
randomness, 𝑚 permuted lists are 
chosen and PS rearranges by vote ids 
and using Split-Value proves equality to 
posted concealed votes  



Creation of Proof (Continued) 

•  Remaining 𝑚 permuted lists of 
commitments to components of votes 
are opened in permuted form 

•  Vote values are computed by addition of 
components 

•  Assuming fewer than three gossipy 
servers, voter votes remain private 

•  Dealing with failures requires two 
additional servers. Details in full paper. 

•  Further work deals with fully malicious 
servers 



Probability of Accepting False Proof 
•  Theorem: The probability that the 

revealed arrays of vote values are 
permutations of same values but differ 
from actually cast value by more than k 
locations and accepting the tally as 
correct is at most 

​1/𝐶(2𝑚,𝑚) + ​(​1/2 )↑𝑘 ≈​√⁠(3.14𝑚) /​2↑2𝑚  + ​(​1/2 )↑𝑘  
•  Speed. Tallying and posting proof of 

correctness for one million votes 
requires less than ten minutes! 
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•  AddiDon	
  
– M=17	
  
– x=7,	
  y=7,	
  x+y=z=14	
  
– X=(3,4),	
  Y=(15,9),	
  Z=(8,6)	
  
– CLAIM:	
  val(X)+val(Y)	
  =	
  val(Z)	
  

 
3 
 
 
4 

 
15 

 
9 

 
8 

 
6 

X Y Z 

10 

-10 



IllustraDon	
  of	
  the	
  Method	
  

•  AddiDon	
  
– M=17	
  
– x=7,	
  y=7,	
  x+y=z=14	
  
– X=(3,4),	
  Y=(15,9),	
  Z=(8,6)	
  
Prover	
  posts	
  (10,-­‐10).	
  	
  	
  Verifier:	
  c	
  	
  	
  R	
  	
  	
  {1,2}	
  

 
 

3 

 
 
4 

 
 

15 

 
9 

 
 

8 

 
6 

X Y Z 

c=1 
10 


